here::here()
data/
and R scripts in R/
source()
to run code in another script# vector1:10#> [1] 1 2 3 4 5 6 7 8 9 10c("a", "b")#> [1] "a" "b"# data.framehead(sleep, 2)#> extra group ID#> 1 0.7 1 1#> 2 -1.6 1 2# Object assignmentmy_name <- "Luke"my_name#> [1] "Luke"
# Viewing data.framescolnames(sleep)#> [1] "extra" "group" "ID"str(sleep)#> 'data.frame': 20 obs. of 3 variables:#> $ extra: num 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2 ...#> $ group: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...#> $ ID : Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...summary(sleep)#> extra group ID #> Min. :-1.600 1:10 1 :2 #> 1st Qu.:-0.025 2:10 2 :2 #> Median : 0.950 3 :2 #> Mean : 1.540 4 :2 #> 3rd Qu.: 3.400 5 :2 #> Max. : 5.500 6 :2 #> (Other):8
data/
folder%>%
pipe to chain functions togethermutate()
, select()
, rename()
, filter()
, arrange()
,
group_by()
, summarise()
, gather()
, spread()
nhanes_wrangled <- NHANES %>% mutate(MoreThan5DaysActive = if_else(PhysActiveDays >= 5, TRUE, FALSE)) %>% select(SurveyYr, Gender, Age, Poverty, BMI, BPSysAve, BPDiaAve, TotChol, DiabetesAge, nBabies, MoreThan5DaysActive, AlcoholDay) %>% rename(TotalCholesterol = TotChol, NumberOfBabies = nBabies, DrinksOfAlcoholInDay = AlcoholDay, AgeDiabetesDiagnosis = DiabetesAge) %>% filter(Age >= 18, Age <= 75)nhanes_wrangled
#> # A tibble: 10,000 x 12#> SurveyYr Gender Age Poverty BMI BPSysAve BPDiaAve TotChol DiabetesAge#> <fct> <fct> <int> <dbl> <dbl> <int> <int> <dbl> <int>#> 1 2009_10 male 34 1.36 32.2 113 85 3.49 NA#> 2 2009_10 male 34 1.36 32.2 113 85 3.49 NA#> 3 2009_10 male 34 1.36 32.2 113 85 3.49 NA#> 4 2009_10 male 4 1.07 15.3 NA NA NA NA#> # … with 9,996 more rows, and 3 more variables: nBabies <int>,#> # MoreThan5DaysActive <lgl>, AlcoholDay <int>
nhanes_wrangled <- NHANES %>% mutate(MoreThan5DaysActive = if_else(PhysActiveDays >= 5, TRUE, FALSE)) %>% select(SurveyYr, Gender, Age, Poverty, BMI, BPSysAve, BPDiaAve, TotChol, DiabetesAge, nBabies, MoreThan5DaysActive, AlcoholDay) %>% rename(TotalCholesterol = TotChol, NumberOfBabies = nBabies, DrinksOfAlcoholInDay = AlcoholDay, AgeDiabetesDiagnosis = DiabetesAge) %>% filter(Age >= 18, Age <= 75)nhanes_wrangled
#> # A tibble: 10,000 x 12#> SurveyYr Gender Age Poverty BMI BPSysAve BPDiaAve TotalCholesterol#> <fct> <fct> <int> <dbl> <dbl> <int> <int> <dbl>#> 1 2009_10 male 34 1.36 32.2 113 85 3.49#> 2 2009_10 male 34 1.36 32.2 113 85 3.49#> 3 2009_10 male 34 1.36 32.2 113 85 3.49#> 4 2009_10 male 4 1.07 15.3 NA NA NA #> # … with 9,996 more rows, and 4 more variables:#> # AgeDiabetesDiagnosis <int>, NumberOfBabies <int>,#> # MoreThan5DaysActive <lgl>, DrinksOfAlcoholInDay <int>
nhanes_wrangled <- NHANES %>% mutate(MoreThan5DaysActive = if_else(PhysActiveDays >= 5, TRUE, FALSE)) %>% select(SurveyYr, Gender, Age, Poverty, BMI, BPSysAve, BPDiaAve, TotChol, DiabetesAge, nBabies, MoreThan5DaysActive, AlcoholDay) %>% rename(TotalCholesterol = TotChol, NumberOfBabies = nBabies, DrinksOfAlcoholInDay = AlcoholDay, AgeDiabetesDiagnosis = DiabetesAge) %>% filter(Age >= 18, Age <= 75)nhanes_wrangled
#> # A tibble: 6,964 x 12#> SurveyYr Gender Age Poverty BMI BPSysAve BPDiaAve TotalCholesterol#> <fct> <fct> <int> <dbl> <dbl> <int> <int> <dbl>#> 1 2009_10 male 34 1.36 32.2 113 85 3.49#> 2 2009_10 male 34 1.36 32.2 113 85 3.49#> 3 2009_10 male 34 1.36 32.2 113 85 3.49#> 4 2009_10 female 49 1.91 30.6 112 75 6.7 #> # … with 6,960 more rows, and 4 more variables:#> # AgeDiabetesDiagnosis <int>, NumberOfBabies <int>,#> # MoreThan5DaysActive <lgl>, DrinksOfAlcoholInDay <int>
nhanes_wrangled %>% gather(Measure, Value, -SurveyYr, -Gender) %>% group_by(SurveyYr, Gender, Measure) %>% summarise(Mean = round(mean(Value, na.rm = TRUE), 2)) %>% arrange(Measure, Gender, SurveyYr) %>% spread(SurveyYr, Mean)
#> # A tibble: 69,640 x 4#> SurveyYr Gender Measure Value#> <fct> <fct> <chr> <dbl>#> 1 2009_10 male Age 34#> 2 2009_10 male Age 34#> 3 2009_10 male Age 34#> 4 2009_10 female Age 49#> # … with 6.964e+04 more rows
nhanes_wrangled %>% gather(Measure, Value, -SurveyYr, -Gender) %>% group_by(SurveyYr, Gender, Measure) %>% summarise(Mean = round(mean(Value, na.rm = TRUE), 2)) %>% arrange(Measure, Gender, SurveyYr) %>% spread(SurveyYr, Mean)
#> # A tibble: 40 x 4#> # Groups: SurveyYr, Gender [4]#> SurveyYr Gender Measure Mean#> <fct> <fct> <chr> <dbl>#> 1 2009_10 female Age 44.0#> 2 2009_10 female AgeDiabetesDiagnosis 48.1#> 3 2009_10 female BMI 29.0#> 4 2009_10 female BPDiaAve 67.7#> # … with 36 more rows
nhanes_wrangled %>% gather(Measure, Value, -SurveyYr, -Gender) %>% group_by(SurveyYr, Gender, Measure) %>% summarise(Mean = round(mean(Value, na.rm = TRUE), 2)) %>% arrange(Measure, Gender, SurveyYr) %>% spread(SurveyYr, Mean)
#> # A tibble: 40 x 4#> # Groups: SurveyYr, Gender [4]#> SurveyYr Gender Measure Mean#> <fct> <fct> <chr> <dbl>#> 1 2009_10 female Age 44.0#> 2 2011_12 female Age 44.2#> 3 2009_10 male Age 43.1#> 4 2011_12 male Age 43.9#> # … with 36 more rows
nhanes_wrangled %>% gather(Measure, Value, -SurveyYr, -Gender) %>% group_by(SurveyYr, Gender, Measure) %>% summarise(Mean = round(mean(Value, na.rm = TRUE), 2)) %>% arrange(Measure, Gender, SurveyYr) %>% spread(SurveyYr, Mean)
#> # A tibble: 20 x 4#> # Groups: Gender [2]#> Gender Measure `2009_10` `2011_12`#> <fct> <chr> <dbl> <dbl>#> 1 female Age 44.0 44.2#> 2 female AgeDiabetesDiagnosis 48.1 46.5#> 3 female BMI 29.0 28.6#> 4 female BPDiaAve 67.7 70.0#> # … with 16 more rows
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |